6457 measured reflections

 $R_{\rm int} = 0.066$ 

2974 independent reflections

2314 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Quinoxaline-chloranilic acid (1/1)

#### Kazuma Gotoh, Hirokazu Nagoshi and Hiroyuki Ishida\*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 5 October 2007; accepted 9 October 2007

Key indicators: single-crystal X-ray study; T = 95 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.102; data-to-parameter ratio = 14.4.

In the crystal structure of the title compound,  $C_8H_6N_2$ ·- $C_6H_2Cl_2O_4$ , there are two crystallographically independent chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) molecules, each of which is located on an inversion center. The quinoxaline ring system makes dihedral angles of 6.09 (9) and 44.50 (9)° with the two chloranilic acid planes. The quinoxaline and the chloranilic acid are connected alternately by  $O-H \cdots N$  hydrogen bonds, forming a zigzag chain running along the [201] direction. The chains are stacked along the *a* axis, forming a layer extending parallel to the (010) plane. The layers are further linked by  $C-H \cdots O$  hydrogen bonds.

#### **Related literature**

For related literature, see: Gotoh *et al.* (2006, 2007); Horiuchi *et al.* (2005); Ishida & Kashino (1999); Prager *et al.* (2005, 2006).



#### **Experimental**

Crystal data  $C_8H_6N_2 \cdot C_6H_2Cl_2O_4$   $M_r = 339.13$ Triclinic,  $P\overline{1}$  a = 3.7963 (3) Å b = 7.7760 (7) Å c = 22.4830 (14) Å  $\alpha = 93.444$  (3)°  $\beta = 94.338$  (3)°

$$\begin{split} \gamma &= 92.322 \ (4)^{\circ} \\ V &= 659.92 \ (9) \ \text{\AA}^{3} \\ Z &= 2 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu &= 0.51 \ \text{mm}^{-1} \\ T &= 95 \ (1) \ \text{K} \\ 0.48 \ \times \ 0.43 \ \times \ 0.10 \ \text{mm} \end{split}$$

Data collection

#### Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.776, T_{max} = 0.950$

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.102$               | independent and constrained                                |
| S = 1.00                        | refinement                                                 |
| 2974 reflections                | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$  |
| 207 parameters                  | $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$               | D-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $H \cdot \cdot \cdot A$   | $D \cdots A$     | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|--------------------------------------|
| O2−H2···N1                                | 0.82 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.90 (3)                  | 2.683 (2)        | 159 (3)                              |
| $O2-H2\cdots O1^{i}$                      | 0.82 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.30 (3)                  | 2.687 (2)        | 110 (2)                              |
| $O4-H4\cdots N2$                          | 0.84 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.89 (5)                  | 2.701 (2)        | 163 (5)                              |
| O4−H4···O3 <sup>ii</sup>                  | 0.84 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.35 (5)                  | 2.691 (2)        | 105 (4)                              |
| C7−H7···O1 <sup>iii</sup>                 | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.54                      | 3.191 (3)        | 126                                  |
| C8−H8···O3 <sup>ii</sup>                  | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.43                      | 3.048 (3)        | 123                                  |
| $C10-H10\cdots Cl2^{iv}$                  | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.78                      | 3.560 (2)        | 140                                  |
| $C11-H11\cdots O3^{iv}$                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.59                      | 3.538 (3)        | 173                                  |
| Symmetry codes:<br>-x + 1, -y + 1, -z; (i | (i) $-x + 2, -x + 2, -x + 1, -y, -x + 1, -x + 1, -y, -x + 1, -x +$ | -y + 1, -z; (i<br>-z + 1. | i) $-x, -y + 1,$ | -z + 1; (iii)                        |

Data collection: *PROCESS-AUTO* (Rigaku/MSC, 2004); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* 

(Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS9*/ (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japan Society for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2054).

#### References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.
- Gotoh, K., Tabuchi, Y., Akashi, H. & Ishida, H. (2006). Acta Cryst. E62, 04420-04421.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). *Nat. Mater.* 4, 163–166.
- Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.
- Prager, M., Pawlukojć, A., Sobczyk, L., Grech, E. & Grimm, H. (2005). J. Phys. Condens. Matter, 17, 5725–5739.
- Prager, M., Pietraszko, A., Sobczyk, L., Pawlukojć, A., Grech, E., Seydel, T., Wischnewski, A. & Zamponi, M. (2006). J. Chem. Phys. 125, 194525-1– 194525-11.
- Rigaku/MSC. (2004). *PROCESS-AUTO* and *CrystalStructure*. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04295 [doi:10.1107/S1600536807049483]

## **Quinoxaline-chloranilic acid (1/1)**

## K. Gotoh, H. Nagoshi and H. Ishida

#### Comment

The title compound was prepared in order to extend our study on *D*-H···*A* hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid 1:1 and 2:1 systems (Gotoh *et al.*, 2006).

The asymmetric unit contains one quinoxaline molecule and two half chloranilic acid molecules. No acid-base interaction involving a proton transfer is observed between the quinoxaline and the chloranilic acid. In the crystal structure, the quinoxaline and the chloranilic acid are linked alternately through two kinds of O—H···N hydrogen bonds to form a zigzag chain running along the [20T] direction (Fig. 1). Similar chain structures have been observed in the related compounds containing the pyrazine unit, *i.e.*, pyrazine–chloranilic acid (1/1) (Ishida & Kashino, 1999), phenazine–chloranilic acid (1/1) (Horiuchi *et al.*, 2005; Gotoh *et al.*, 2007) and tetramethylpyrazine–chloranilic acid (1/1) (Prager *et al.*, 2005, 2006). The chains are stacked along the *a* axis, forming a layer extending parallel to the (010) plane (Fig. 2). The layers are further linked by C—H···O hydrogen bonds.

#### Experimental

Single crystals were obtained by slow evaporation from a methanol solution of chloranilic acid (99 mg) and quinoxaline (63 mg).

#### Refinement

O-bound H atoms were found in a difference Fourier map and refined isotropically (refined distances given in Table 1). C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound, with 70% probability displacement ellipsoids. The dashed lines indicate hydrogen bonds (symmetry codes as Table 1).



Fig. 2. A partial packing diagram of the title compound, viewed down the *a* axis. The dashed lines indicate hydrogen bonds.

# Quinoxaline-chloranilic acid (1/1)

| Crystal data                    |                                                         |
|---------------------------------|---------------------------------------------------------|
| $C_8H_6N_2 \cdot C_6H_2Cl_2O_4$ | Z = 2                                                   |
| $M_r = 339.13$                  | $F_{000} = 344.00$                                      |
| Triclinic, $P\overline{1}$      | $D_{\rm x} = 1.707 \ {\rm Mg \ m}^{-3}$                 |
| Hall symbol: -P 1               | Mo $K\alpha$ radiation<br>$\lambda = 0.71075 \text{ Å}$ |
| a = 3.7963 (3)  Å               | Cell parameters from 6043 reflections                   |
| b = 7.7760 (7)  Å               | $\theta = 3.1 - 27.5^{\circ}$                           |
| c = 22.4830 (14)  Å             | $\mu = 0.51 \text{ mm}^{-1}$                            |
| $\alpha = 93.444 \ (3)^{\circ}$ | T = 95 (1)  K                                           |
| $\beta = 94.338 \ (3)^{\circ}$  | Plate, orange                                           |
| $\gamma = 92.322 \ (4)^{\circ}$ | $0.48\times0.43\times0.10\ mm$                          |
| $V = 659.92 (9) \text{ Å}^3$    |                                                         |

Data collection

| Rigaku R-AXIS RAPID<br>diffractometer                        | 2314 reflections with $I > 2\sigma(I)$ |
|--------------------------------------------------------------|----------------------------------------|
| Detector resolution: 10.00 pixels mm <sup>-1</sup>           | $R_{\rm int} = 0.066$                  |
| ω scans                                                      | $\theta_{\text{max}} = 27.5^{\circ}$   |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) | $\theta_{\min} = 3.1^{\circ}$          |
| $T_{\min} = 0.776, \ T_{\max} = 0.950$                       | $h = -4 \rightarrow 4$                 |
| 6457 measured reflections                                    | $k = -10 \rightarrow 10$               |
| 2974 independent reflections                                 | <i>l</i> = −28→29                      |

## Refinement

| 2                                                              |                                                                           |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                      |
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                                | H atoms treated by a mixture of independent and constrained refinement    |
| $wR(F^2) = 0.102$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0337P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.00                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                    |
| 2974 reflections                                               | $\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$                       |
| 207 parameters                                                 | $\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$                    |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                               |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|-------------|--------------|---------------------------|
| Cl1 | 0.71248 (15) | 0.13239 (7) | -0.05495 (2) | 0.01197 (14)              |
| Cl2 | 0.30454 (15) | 0.15380 (7) | 0.54442 (2)  | 0.01202 (14)              |
| 01  | 1.0774 (4)   | 0.4141 (2)  | -0.11448 (6) | 0.0123 (3)                |
| O2  | 0.6729 (4)   | 0.2726 (2)  | 0.06970 (6)  | 0.0123 (4)                |
| 03  | -0.0320 (4)  | 0.4309 (2)  | 0.61393 (6)  | 0.0124 (4)                |
| O4  | 0.3146 (4)   | 0.2776 (2)  | 0.42231 (6)  | 0.0120 (4)                |
| N1  | 0.6017 (5)   | 0.3172 (2)  | 0.18738 (7)  | 0.0092 (4)                |
| N2  | 0.4432 (5)   | 0.3263 (2)  | 0.30786 (7)  | 0.0088 (4)                |
| C1  | 1.0353 (6)   | 0.4490 (3)  | -0.06137 (8) | 0.0074 (4)                |
| C2  | 0.8644 (6)   | 0.3303 (3)  | -0.02377 (8) | 0.0077 (4)                |
| C3  | 0.8287 (6)   | 0.3768 (3)  | 0.03447 (8)  | 0.0084 (4)                |
| C4  | -0.0157 (6)  | 0.4576 (3)  | 0.56123 (8)  | 0.0083 (4)                |
| C5  | 0.1411 (6)   | 0.3397 (3)  | 0.51849 (8)  | 0.0080 (4)                |
| C6  | 0.1634 (6)   | 0.3792 (3)  | 0.46131 (8)  | 0.0082 (4)                |
| C7  | 0.4737 (6)   | 0.4533 (3)  | 0.21394 (9)  | 0.0105 (4)                |
| H7  | 0.4338       | 0.5520      | 0.1918       | 0.013*                    |
| C8  | 0.3932 (6)   | 0.4577 (3)  | 0.27438 (9)  | 0.0100 (4)                |
| H8  | 0.2997       | 0.5592      | 0.2914       | 0.012*                    |
| C9  | 0.5850 (6)   | 0.1841 (3)  | 0.28184 (8)  | 0.0077 (4)                |
| C10 | 0.6588 (6)   | 0.0413 (3)  | 0.31613 (9)  | 0.0114 (4)                |
| H10 | 0.6112       | 0.0446      | 0.3571       | 0.014*                    |
| C11 | 0.7991 (6)   | -0.1021 (3) | 0.29023 (9)  | 0.0129 (5)                |
| H11 | 0.8500       | -0.1977     | 0.3133       | 0.015*                    |
| C12 | 0.8687 (6)   | -0.1080 (3) | 0.22886 (9)  | 0.0132 (5)                |
| H12 | 0.9628       | -0.2085     | 0.2112       | 0.016*                    |
| C13 | 0.8022 (6)   | 0.0286 (3)  | 0.19491 (9)  | 0.0111 (4)                |
| H13 | 0.8501       | 0.0228      | 0.1540       | 0.013*                    |
| C14 | 0.6621 (6)   | 0.1784 (3)  | 0.22068 (8)  | 0.0082 (4)                |
| H2  | 0.669 (8)    | 0.311 (4)   | 0.1043 (12)  | 0.018 (7)*                |
| H4  | 0.338 (14)   | 0.312 (7)   | 0.388 (2)    | 0.110 (19)*               |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|-------------|--------------|---------------|
| Cl1 | 0.0151 (3)  | 0.0100 (3)  | 0.0103 (3)  | -0.0034 (2) | 0.00261 (18) | -0.00259 (17) |
| Cl2 | 0.0171 (3)  | 0.0093 (3)  | 0.0107 (3)  | 0.0050 (2)  | 0.00351 (18) | 0.00301 (17)  |
| 01  | 0.0168 (9)  | 0.0148 (9)  | 0.0057 (7)  | -0.0014 (7) | 0.0041 (6)   | 0.0002 (5)    |
| 02  | 0.0203 (10) | 0.0120 (9)  | 0.0047 (7)  | -0.0050 (7) | 0.0051 (6)   | 0.0007 (5)    |
| 03  | 0.0185 (9)  | 0.0134 (9)  | 0.0063 (7)  | 0.0027 (7)  | 0.0049 (6)   | 0.0020 (5)    |
| 04  | 0.0194 (9)  | 0.0112 (9)  | 0.0066 (7)  | 0.0054 (7)  | 0.0056 (6)   | 0.0000 (5)    |
| N1  | 0.0077 (10) | 0.0131 (10) | 0.0068 (8)  | -0.0019 (8) | 0.0021 (6)   | 0.0004 (6)    |
| N2  | 0.0097 (10) | 0.0097 (10) | 0.0073 (8)  | 0.0009 (7)  | 0.0024 (6)   | -0.0003 (6)   |
| C1  | 0.0052 (11) | 0.0109 (11) | 0.0063 (9)  | 0.0005 (8)  | 0.0009 (7)   | 0.0017 (7)    |
| C2  | 0.0085 (11) | 0.0069 (11) | 0.0077 (9)  | -0.0011 (8) | 0.0017 (7)   | 0.0001 (7)    |
| C3  | 0.0071 (11) | 0.0095 (11) | 0.0088 (10) | -0.0012 (9) | 0.0011 (7)   | 0.0031 (7)    |
| C4  | 0.0074 (11) | 0.0096 (11) | 0.0075 (9)  | -0.0020 (8) | 0.0011 (7)   | -0.0008 (7)   |
| C5  | 0.0095 (11) | 0.0062 (11) | 0.0085 (10) | 0.0018 (8)  | 0.0002 (7)   | 0.0014 (7)    |
| C6  | 0.0084 (11) | 0.0083 (11) | 0.0076 (10) | -0.0009 (8) | 0.0024 (7)   | -0.0018 (7)   |
| C7  | 0.0086 (11) | 0.0106 (11) | 0.0126 (10) | -0.0008 (9) | 0.0011 (8)   | 0.0025 (7)    |
| C8  | 0.0100 (11) | 0.0086 (11) | 0.0115 (10) | 0.0009 (9)  | 0.0022 (8)   | -0.0003 (7)   |
| С9  | 0.0071 (11) | 0.0099 (11) | 0.0060 (9)  | -0.0011 (8) | 0.0008 (7)   | -0.0005 (7)   |
| C10 | 0.0135 (12) | 0.0113 (12) | 0.0099 (10) | 0.0016 (9)  | 0.0026 (7)   | 0.0016 (7)    |
| C11 | 0.0133 (12) | 0.0096 (12) | 0.0161 (11) | 0.0002 (9)  | 0.0013 (8)   | 0.0027 (8)    |
| C12 | 0.0108 (12) | 0.0114 (12) | 0.0172 (11) | 0.0008 (9)  | 0.0043 (8)   | -0.0039 (8)   |
| C13 | 0.0072 (11) | 0.0140 (12) | 0.0115 (10) | -0.0018 (9) | 0.0028 (7)   | -0.0034 (7)   |
| C14 | 0.0053 (11) | 0.0107 (12) | 0.0084 (10) | -0.0019 (8) | 0.0015 (7)   | -0.0013 (7)   |

# Geometric parameters (Å, °)

| Cl1—C2             | 1.711 (2) | C4—C6 <sup>ii</sup> | 1.508 (3) |
|--------------------|-----------|---------------------|-----------|
| Cl2—C5             | 1.713 (2) | C5—C6               | 1.348 (3) |
| O1—C1              | 1.232 (2) | C6—C4 <sup>ii</sup> | 1.508 (3) |
| O2—C3              | 1.321 (2) | С7—С8               | 1.414 (3) |
| O2—H2              | 0.82 (3)  | С7—Н7               | 0.9500    |
| O3—C4              | 1.221 (2) | С8—Н8               | 0.9500    |
| O4—C6              | 1.324 (2) | C9—C10              | 1.415 (3) |
| O4—H4              | 0.85 (5)  | C9—C14              | 1.426 (3) |
| N1—C7              | 1.313 (3) | C10-C11             | 1.372 (3) |
| N1—C14             | 1.367 (3) | С10—Н10             | 0.9500    |
| N2—C8              | 1.316 (3) | C11—C12             | 1.423 (3) |
| N2—C9              | 1.368 (3) | C11—H11             | 0.9500    |
| C1—C2              | 1.455 (3) | C12—C13             | 1.365 (3) |
| C1C3 <sup>i</sup>  | 1.505 (3) | C12—H12             | 0.9500    |
| C2—C3              | 1.356 (3) | C13—C14             | 1.411 (3) |
| C3—C1 <sup>i</sup> | 1.505 (3) | С13—Н13             | 0.9500    |
| C4—C5              | 1.464 (3) |                     |           |
| C3—O2—H2           | 114 (2)   | N1—C7—H7            | 118.9     |
| С6—О4—Н4           | 119 (4)   | С8—С7—Н7            | 118.9     |

| C7—N1—C14                                         | 117.54 (16)                                                                | N2—C8—C7        | 122.4 (2)   |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------|-----------------|-------------|--|--|--|
| C8—N2—C9                                          | 116.86 (17)                                                                | N2—C8—H8        | 118.8       |  |  |  |
| O1—C1—C2                                          | 123.3 (2)                                                                  | С7—С8—Н8        | 118.8       |  |  |  |
| 01—C1—C3 <sup>i</sup>                             | 117.76 (19)                                                                | N2—C9—C10       | 119.65 (17) |  |  |  |
| C2—C1—C3 <sup>i</sup>                             | 118.89 (17)                                                                | N2              | 120.90 (18) |  |  |  |
| C3—C2—C1                                          | 120.2 (2)                                                                  | C10—C9—C14      | 119.45 (19) |  |  |  |
| C3—C2—Cl1                                         | 121.46 (17)                                                                | C11—C10—C9      | 119.96 (18) |  |  |  |
| C1—C2—Cl1                                         | 118.33 (15)                                                                | C11—C10—H10     | 120.0       |  |  |  |
| O2—C3—C2                                          | 121.7 (2)                                                                  | С9—С10—Н10      | 120.0       |  |  |  |
| O2—C3—C1 <sup>i</sup>                             | 117.37 (17)                                                                | C10—C11—C12     | 120.2 (2)   |  |  |  |
| C2—C3—C1 <sup>i</sup>                             | 120.91 (19)                                                                | C10-C11-H11     | 119.9       |  |  |  |
| O3—C4—C5                                          | 123.53 (19)                                                                | C12—C11—H11     | 119.9       |  |  |  |
| O3—C4—C6 <sup>ii</sup>                            | 118.54 (18)                                                                | C13—C12—C11     | 121.0 (2)   |  |  |  |
| C5—C4—C6 <sup>ii</sup>                            | 117.93 (17)                                                                | C13—C12—H12     | 119.5       |  |  |  |
| C6—C5—C4                                          | 120.83 (19)                                                                | C11—C12—H12     | 119.5       |  |  |  |
| C6—C5—Cl2                                         | 121.59 (17)                                                                | C12—C13—C14     | 119.89 (18) |  |  |  |
| C4—C5—Cl2                                         | 117.55 (14)                                                                | С12—С13—Н13     | 120.1       |  |  |  |
| O4—C6—C5                                          | 122.0 (2)                                                                  | C14—C13—H13     | 120.1       |  |  |  |
| O4—C6—C4 <sup>ii</sup>                            | 116.79 (17)                                                                | N1—C14—C13      | 120.32 (17) |  |  |  |
| C5C6C4 <sup>ii</sup>                              | 121.19 (18)                                                                | N1—C14—C9       | 120.20 (19) |  |  |  |
| N1—C7—C8                                          | 122.10 (19)                                                                | C13—C14—C9      | 119.48 (19) |  |  |  |
| O1—C1—C2—C3                                       | 179.6 (2)                                                                  | C9—N2—C8—C7     | 1.3 (3)     |  |  |  |
| C3 <sup>i</sup> —C1—C2—C3                         | 0.1 (3)                                                                    | N1—C7—C8—N2     | 0.4 (4)     |  |  |  |
| O1—C1—C2—Cl1                                      | -0.3 (3)                                                                   | C8—N2—C9—C10    | 177.4 (2)   |  |  |  |
| C3 <sup>i</sup> —C1—C2—Cl1                        | -179.79 (16)                                                               | C8—N2—C9—C14    | -2.1 (3)    |  |  |  |
| C1—C2—C3—O2                                       | 179.54 (18)                                                                | N2-C9-C10-C11   | 179.6 (2)   |  |  |  |
| Cl1—C2—C3—O2                                      | -0.6 (3)                                                                   | C14—C9—C10—C11  | -0.8 (3)    |  |  |  |
| C1-C2-C3-C1 <sup>i</sup>                          | -0.1 (4)                                                                   | C9-C10-C11-C12  | -0.4 (4)    |  |  |  |
| Cl1—C2—C3—C1 <sup>i</sup>                         | 179.78 (16)                                                                | C10-C11-C12-C13 | 0.9 (4)     |  |  |  |
| O3—C4—C5—C6                                       | -177.5 (2)                                                                 | C11—C12—C13—C14 | 0.0 (3)     |  |  |  |
| C6 <sup>ii</sup> —C4—C5—C6                        | 2.3 (4)                                                                    | C7—N1—C14—C13   | -179.5 (2)  |  |  |  |
| O3—C4—C5—Cl2                                      | 0.8 (3)                                                                    | C7—N1—C14—C9    | 0.3 (3)     |  |  |  |
| C6 <sup>ii</sup> —C4—C5—Cl2                       | -179.44 (16)                                                               | C12—C13—C14—N1  | 178.6 (2)   |  |  |  |
| C4—C5—C6—O4                                       | 177.7 (2)                                                                  | C12—C13—C14—C9  | -1.2 (3)    |  |  |  |
| Cl2—C5—C6—O4                                      | -0.5 (3)                                                                   | N2-C9-C14-N1    | 1.3 (3)     |  |  |  |
| C4—C5—C6—C4 <sup>ii</sup>                         | -2.3 (4)                                                                   | C10—C9—C14—N1   | -178.2 (2)  |  |  |  |
| Cl2—C5—C6—C4 <sup>ii</sup>                        | 179.43 (17)                                                                | N2-C9-C14-C13   | -178.8 (2)  |  |  |  |
| C14—N1—C7—C8                                      | -1.1 (3)                                                                   | C10—C9—C14—C13  | 1.6 (3)     |  |  |  |
| Symmetry codes: (i) $-x+2$ , $-y+1$ , $-z$ ; (ii) | Symmetry codes: (i) $-x+2$ , $-y+1$ , $-z$ ; (ii) $-x$ , $-y+1$ , $-z+1$ . |                 |             |  |  |  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                 | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-------------------------|-------------|--------------|--------------|---------|
| O2—H2…N1                | 0.82 (3)    | 1.90 (3)     | 2.683 (2)    | 159 (3) |
| O2—H2···O1 <sup>i</sup> | 0.82 (3)    | 2.30 (3)     | 2.687 (2)    | 110 (2) |

# supplementary materials

| O4—H4…N2                    | 0.84 (5) | 1.89 (5) | 2.701 (2) | 163 (5) |
|-----------------------------|----------|----------|-----------|---------|
| O4—H4···O3 <sup>ii</sup>    | 0.84 (5) | 2.35 (5) | 2.691 (2) | 105 (4) |
| C7—H7····O1 <sup>iii</sup>  | 0.95     | 2.54     | 3.191 (3) | 126     |
| C8—H8···O3 <sup>ii</sup>    | 0.95     | 2.43     | 3.048 (3) | 123     |
| C10—H10···Cl2 <sup>iv</sup> | 0.95     | 2.78     | 3.560 (2) | 140     |
| C11—H11···O3 <sup>iv</sup>  | 0.95     | 2.59     | 3.538 (3) | 173     |
|                             |          |          |           |         |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*+1, -*y*, -*z*+1.



Fig. 1

Fig. 2

